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Under hot-forming conditions characterized by high homologous temperatures and
strain-rates, metals usually exhibit rate-dependent inelastic behavior. An
elastic-viscoplastic constitutive model is presented here to describe metal behavior during
hot-forming. The model uses an isotropic internal variable to represent the resistance
offered to plastic deformation by the microstructure. Evolution equations are developed for
the inelastic strain and the deformation resistance based on experimental results. A
methodology is presented for extracting model parameters from constant true strain-rate
compression tests performed at different temperatures. Model parameters are determined
for an Al-1Mn alloy and an Al-Mg-Si alloy, and the predictions of the model are shown to be
in good agreement with the experimental data. C© 2000 Kluwer Academic Publishers

1. Introduction
Metal-Forming operations such as Rolling and Forg-
ing are frequently performed at high homologous tem-
peratures (0.6 to 0.9) and high strain rates (10−3 to
102 sec−1). The metal is also subjected to large defor-
mations and rotations. Designing appropriate tooling to
handle these extreme conditions is obviously challeng-
ing. In the past, the design process was guided primarily
by experimental trial-and-error and empirical model-
ing. This process is being supplemented today by nu-
merical simulation of the forming process. Numerical
simulations have been made possible by the increased
understanding of material behavior as well as the rapid
progress in computing power.

An important ingredient in numerical simulation of
metal forming is an accurate description of the constitu-
tive behavior of the metal. Due to the high homologous
temperatures in hot forming, plastic behavior tends to
be strain-rate sensitive i.e. viscoplastic. Viscoplastic
constitutive equations are widely used in finite-element
modeling of hot-forming [1–6]. The constitutive behav-
ior of a given material is usually determined by uniaxial
testing in compression, tension, and/or torsion in the
temperature and strain-rate regime of interest. A uni-
axial model is first constructed and then incorporated
into a multi-dimensional framework such as the Norton-
Hoff model [1–3] or the Perzyna model [4, 5]. Tradi-
tionally, uniaxial models [6–8] express the flow stress
as a function of the process parameters and several
constants which are established experimentally. These
models are empirical and describe material behavior
without making a direct connection to microstructural
changes that are the root cause of rate-sensitivity.

A rising trend in thermomechanical constitutive
modeling is the use of internal variables [9–13]. These
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variables are used to describe, in a macroscopic average
sense, events associated with the development of the
microstructure. They characterize average properties
associated with dislocation motion, and their interac-
tion with grain boundaries, precipitates, and disloca-
tion pile-ups. Internal variables evolve with viscoplas-
tic deformation and this evolution can be described by
rate equations. Typically these variables are not directly
measurable but they can be quantified using external
variables such as stress, strain, strain rate, and temper-
ature. A fundamental tenet of internal variable based
constitutive modeling is that the inelastic strain rate at
any instant is governed by the current values of the
external and internal variables. History dependence is
included in the model through the evolution of the in-
ternal variables.

A number of internal variable models exist and have
been used extensively in design applications too. Most
though have been developed specifically for creep and
small strain plasticity [9–12]. The strains and strain
rates of interest in this regime do not exceed 5% and
10−2 sec−1, respectively. Strains and strain-rates in hot
metal forming are considerably higher. There are fewer
internal variable models [13–15] available for these ap-
plications. Anand’s model [13, 14] uses a single internal
variable which characterizes the internal isotropic re-
sistance offered by the microstructure to deformation.
Sampleet al. [15] have formulated constitutive mod-
els for the plastic working regime that use two inter-
nal state variables. In these models, specific functional
forms are chosen for the inelastic strain rate and the
evolution rate(s) of the isotropic internal variable(s).
The choice of these functions is guided either by ex-
periments or theoretical models governing dislocations
and their interaction with barriers.
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Here, an internal variable based elastic-viscoplastic
constitutive model is presented for two Aluminum
alloys, an Al-1Mn alloy (0.38% Fe, 1.01% Mn,
0.016% Mg, 0.14% Si, 0.0184% others, rest Al) and
an Al-Mg-Si alloy (1.7% Mg, 0.6% Si, 0.3% Cu, 0.2%
Cr, 0.2% Fe, 0.23% Mn, 0.22% others, rest Al). In the
next section, functions will be presented for the inelas-
tic strain-rate and the rate of evolution of the internal
variable. The reasons for the choices are also detailed
in this section. Next, a methodology for estimating the
model parameters from a sequence of compression tests
is outlined. Finally, model parameters are calculated for
the two alloys and the effectiveness of the model is ver-
ified by comparing its predictions with the compression
test results.

2. Elastic-viscoplastic model
Most internal-variable thermomechanical constitutive
models have at least two types of internal variables to
describe the evolution of microstructure [16]. The first
type is a scalar which attempts to capture isotropic hard-
ening/softening phenomena such as dislocation forests,
interaction of dislocations with precipitates, subgrains
etc. This scalar will be represented here by the sym-
bol s. The second kind of internal variable is a second
order tensorial quantity which resembles a stress-like
variable. It is commonly referred to as back-stress and
denoted byαi j . It arises due to the interaction of a dis-
location with a dislocation pile-up and other barriers.

The model presented here has just one isotropic in-
ternal variable,s, and no back stress tensorial variable.
This allows the model to be simple, but it limits its valid-
ity to only monotonic loading situations where there is
no significant texture development. There are a number
of metal-forming problems where such a model would
be tenable.

A single scalar internal variable model requires two
equations; a kinetic equation and a scalar evolution
equation. The kinetic equation will have the following
general form:

˙̄εp = ˙̄εp(σ̄ , s, T) (1)

where ˙̄εp is the effective nonlinear rate of deformation,
σ̄ is the effective Cauchy stress,s is the isotropic inter-
nal variable representing deformation resistance, and
T is the temperature. The scalar evolution equation has
the form:

ṡ= ṡ(σ̄ , ˙̄εp, s, T) (2)

whereṡ is the time rate of evolution ofs. Once suitable
forms are selected for the functions on the right hand
side, these equations can be incorporated into a three-
dimensional constitutive framework as will be shown
later.

The following functional form is suggested for the
kinetic equation:

˙̄εp = Aexp

(−Q

RT

)
exp

(
σ̄

s

)m

(3)

The three material parameters in this equation areA,
Q, andm. Q, here, is an activation energy, whileR is
the universal gas constant. The presence of exp(−Q

RT ) is
motivated by the fact that plastic deformation processes
such as dislocation glide and climb are thermally acti-
vated [17]. The parametersA andQ are assumed to be
temperature independent. The term exp(σ̄

s )m embodies
both the exponential and power-law form, forms that
are commonly used to relate steady state strain-rate to
steady state stress [17]. The exponentm is a measure of
the strain-rate sensitivity. In Anand’s model the kinetic
equation is expressed as [14]:

˙̄εp = Aexp

(−Q

RT

)[
sinh

ξ σ̄

s

] 1
m

(4)

The hyperbolic sine term is a modification of Garofalo’s
sinh function [18] to model steady-state creep. This
form is also regularly used to model steady-state hot-
forming behavior in metals [6, 19]. Historically, the
sinh(x) function has provided a good empirical fit to
steady state data. The exponential form in Equation 3
is preferred here since it is more closely linked to
dislocation mechanisms as suggested by Bodner and
Partom [17].

The functionṡ(σ̄ , ˙̄εp, s, T) is next defined. It is as-
sumed to be a linear function of the plastic strain rate˙̄εp.

ṡ= f (s, σ̄ , T) ˙̄εp (5)

This is a very common assumption and has been used in
small as well as large strain formulations [16]. The func-
tion f (s, σ̄ , T) should describe dynamic strain hard-
ening as well as dynamic recovery. Static recovery
phenomena are more relevant for creep deformation
than for hot-forming. They are hence neglected in this
model.

When a metal specimen is subjected to a constant true
strain rate compression test, a steady state condition
is reached wherein ¯σ approaches a peak steady value.
Under these conditions the true strain rate ˙ε is nearly
equal to the plastic strain ratē̇εp and internal variables
approaches a steady state value too. For such conditions
it can be shown, using Equation 3, that:

σ̄ = cs (6)

where

c =
[

ln

{{ ˙̄εp

A

}
exp

{
Q

RT

}}] 1
m

(7)

is a constant for a given strain-rate and temperature.
Hence the evolution equation fors can be rewritten in
terms ofσ̄ :

˙̄σ = c f (s, σ̄ , T) ˙̄εp (8)

which in turn can be reexpressed as:

dσ̄

dε̄p
= c f (s, σ̄ , T) (9)
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Figure 1 Experimental true stress-strain curves for an Al-1Mn alloy (Shi
et al. [6]). T = 300 C, 400 C, 500 C; strain-rate= 0.25, 2.5, 25 (1/sec.).

In section 4 of this paper, results are presented that per-
tain to the application of the proposed model to a series
of isothermal, constant true strain rate tests performed
on an Al-1Mn alloy [6] and an Al-Mg-Si alloy [20]. The
data obtained from these tests are presented in Figs 1
and 2 in the form of true-stress versus true-strain graphs
for different strain-rates at constant temperatures. Fig. 3
showsdσ̄

dε̄p as a function of ¯σ for different strain-rates at
T = 500◦C for the Al-1Mn alloy. Fig. 4 shows the same
for the Al-Mg-Si alloy atT = 450◦C. These figures re-
veal that there is a steep drop indσ̄dε̄p with increasing
σ̄ followed by a gradual decline to zero as the satura-
tion value ofσ̄ is approached. The following functional
form is suggested forf (σ̄ , s, T) based on Figs 3 and 4:

f (σ̄ , s, T) = f0 tan
(απ

2

(
1− s

s∗
))

(10)

f0 andα are material constants.s∗ is the saturation
value ofs for a given temperature/strain-rate pair. For
s∗ an expression identical to that of Anand [13] is
adopted:

s∗ = s̃

[ ˙̄εp

A
exp

(
Q

RT

)]n

(11)

s̃ andn are additional material parameters. The use of
the tangent function allows the steep drop in Figs 3 and
4 to be captured. Anand chooses to use a power function
to model the data of Figs 3 and 4 [13]:

f (σ̄ , s, T) = f0

∣∣∣∣1− s

s∗

∣∣∣∣asign

(
1− s

s∗

)
(12)

Here,|x| and sign(x) denote the absolute value and the
sign ofx, respectively. The absolute value and the sign
functions were introduced by Anand to accommodate
situations where the current value ofs is greater than
the saturation values∗ as can happen when there is a
sudden drop in strain-rate or rise in temperature.

In the proposed model, the tangent function of
Equation 10 is preferred over the power function of
Equation 12 on two counts. Firstly, it is better able to
describe the steep drop in Figs 3 and 4. This will be

Figure 2 Experimental true stress-strain curves for an as-cast Al-Mg-Si
alloy (Sarkaret al. [20]). T = 400 C, 450 C, 500 C, 550 C; strain-rate=
0.001, 0.01, 0.1, 1.0 (1/sec.).

Figure 3 Slope (dσ̄dε̄p ) of experimental true stress-strain curve for Al-1Mn
as a function of true stress ( ¯σ ); T = 500 C; strain rate= 0.25, 2.5, 25
(1/sec.).

demonstrated in section 4. Secondly, the tangent func-
tion naturally takes care of situations where the current
value ofs exceeds the saturation values∗.

The principal equations of the proposed model are
(3), (5), (10), and (11). These will now be incorporated
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Figure 4 Slope (dσ̄dε̄p ) of experimental true stress-strain curve for
Al-Mg-Si alloy as a function of true stress ( ¯σ ); T = 450 C; strain
rate= 0.001, 0.01, 0.1, 1.0 (1/sec.).

into a three-dimensional, large deformation constitutive
framework. The Cauchy stress tensorσ evolves as:

◦
σ= E : [D − Dp] (13)

where
◦
σ is any one of several possible objective

stress rates such as the Jaumann stress rate,E is the
fourth-order isotropic elasticity tensor,D is the rate-
of-deformation tensor, andDp is the inelastic part of
D. The flow rule forDp is:

Dp = 3 ˙̄εp

2σ̄
S (14)

where S is the deviatoric Cauchy stress tensor,˙̄εp is
the equivalent plastic strain rate as defined by Equa-
tion 3, and ¯σ is the effective von Mises stress. Since
˙̄εp depends ons, an additional equation for the evolu-

tion of s is needed and this is provided by Equations 5
and 10. Equations 13, and 14, coupled with (3), (5), and
(10), provide an isothermal constitutive framework. For
non-isothermal conditions, an additional energy bal-
ance equation will be required to define the evolution
of temperatureT .

In the next section, a methodology for estimation
of model parametersA, Q,m, n, α, s̃, and f0, is pre-
sented.

3. Methodology for parameter estimation
It has been shown that when plastic flow has fully de-
veloped, the slopedσ̄dε̄p is given by Equation 9. The in-
tegrated form of this equation is:

σ = σ ∗
[
1− 2

απ
arcsin

(
exp

{−c f0εpαπ

2σ ∗

}
× sin

{
απ

2

(
1− σ0

σ ∗

)})]
(15)

Hereσ andεp correspond to the true stress and true
inelastic strain in a compression test.σ0 is cs0 wheres0
is the initial value of the deformation resistances for

a given temperature, andσ ∗ is the saturation value of
compressive stressσ for a given temperature/strain-rate
pair.

Another useful equation for parameter estimation is
obtained by manipulating Equation 3, once again for the
case of fully developed plastic flow. Close to saturation,
σ ≈ σ ∗, s≈ s∗, andε̇≈ ε̇p. Whence,

ε̇

A
exp

{
Q

RT

}
= exp

{(
σ ∗

s∗

)m}
(16)

which leads to

σ ∗ = s̃

{ ˙̄εp

A
exp

(
Q

RT

)}n{
ln

( ˙̄εp

A
exp

(
Q

RT

))} 1
m

(17)
where Equation 11 has been used fors∗.

Equations 15 and 17 are sufficient to formulate a
methodology for determination ofA, Q, m, n, α, s̃,
and f0. The procedure for parameter estimation from
uniaxial compression test data over the range of strain-
rates and temperatures of interest is outlined below.

• The saturation stressσ ∗ is determined for each
strain-rate/temperature pair from Fig. 1 for Al-1Mn
and Fig. 2 for Al-Mg-Si.
• For each test, a nonlinear least-squares fit is per-

formed using the functional form of Equation 15.
The fit is done directly on theσ vs εp data. The
parameters determined in the process areα, c f0,
andσ0. Whilec f0 andσ0 are expected to vary from
test to test,α should have the same value for all
tests. However, there is bound to be some varia-
tion andα is therefore determined as the average
of the values determined from all tests. Once an
adequate estimate ofα is obtained the process of
nonlinear least-squares fitting is repeated to obtain
final values forc f0 andσ0 for each test.
• ParametersA, Q,m, n, ands̃ are next found by a

nonlinear least-squares fit on Equation 17 using the
saturation stress (σ ∗) data as a function of strain-
rate and temperature.
• Quantityci is calculated for each test (i = 1..N)

using Equation 7.f0 is then found by averaging:

f0 =
∑N

i=1
(c f0)i

ci

N
(18)

whereN is the number of tests.
• Equation 15 is revisited and the nonlinear fit pro-

cess is repeated using the data of Fig. 1 for the
parameterσ0 alone.
• Finally, values fors0 (initial value of the deforma-

tion resistance) are computed by dividingσ0 by the
appropriate value ofc for each test. Average val-
ues fors0 are calculated for each temperature by
averaging across strain-rates.
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4. Model parameters for Al-1Mn and Al-Mg-Si
The data that formed the basis for the parameter es-
timation for the Al-1Mn alloy were obtained from
Shi et al. [6] and for the Al-Mg-Si alloy from Sarkar
et al. [20]. Shi et al. [6] performed plane-strain com-
pression tests at equivalent strain rates of 0.25, 2.5,
and 25 sec−1. Specimens were prepared from slabs
that were chill-cast, homogenized, hot-rolled, and fi-
nally heat-treated to get a fully recrystallized struc-
ture. Specimens of 10 mm thickness, 50 or 30 mm
width, and 60 mm length were then lubricated and de-
formed to an equivalent strain of 2.0. Sarkaret al. [20]
performed uniaxial compression tests at four strain-
rates (0.001, 0.01, 0.1, 1.0 sec−1) and six temperatures
(300, 350, 400, 450, 500, 550◦C). The Al-Mg-Si alloy
selected had an as-cast dendritic microstructure prior
to testing. Specimens of diameter 10 mm and height
15 mm were compressed to half their height. A ther-
mocouple positioned suitably allowed measurement of
specimen temperature during the test. Lubrication pre-
vented barreling effects. Each one of the curves in Figs 1
and 2 reveals steady-state or near steady-state behav-
ior. This steady state behavior is a consequence of the
balance between work-hardening processes and work
softening mechanisms (usually dynamic recovery for
aluminum alloys).

Model parameters are obtained based on the proce-
dure outlined in section 3. The nonlinear least-squares
fits are performed using subroutines from Numeri-
cal Recipes [21]. These routines use the Levenberg-
Marquardt method. The estimated values of the pa-
rameters for Al-1Mn are listed in Table I and for
Al-Mg-Si in Table II. The initial values of the defor-
mation resistances0 for Al-1Mn are in Table III and
for Al-Mg-Si in Table IV. These numbers by them-
selves do not validate the model. What is interest-
ing though is that the value of the activation energy
Q is 155 kJ/mole for Al-1Mn and 184 kJ/mole for
Al-Mg-Si. These numbers are not very different from
the activation energy for hot working of typical Alu-
minum alloys [7]. This activation energy would be
expected to correspond to that of the dynamic soft-
ening process i.e. dynamic recovery. Dynamic recov-
ery rates are usually dictated by vacancy diffusion. The
activation energy for self-diffusion in pure Aluminum
is 153 kJ/mole [7]. Our calculated value of 184 kJ/
mole for the Al-Mg-Si alloy is somewhat higher but
the value of 155 kJ/mole for Al-1Mn is only marginally
different.

A possible assessment of the model and its parame-
ters is to numerically simulate the isothermal, constant

TABLE I Parameters for the elastic-viscoplastic model for Al-1Mn

Model Parameter Value

A 1.020× 105 sec−1

Q 155 kJ/mole
m 0.942
n 0.035
s̃ 1.24 MPa
f0 3.99 MPa
α 2.00

TABLE I I Parameters for the elastic-viscoplastic model for Al-Mg-Si

Model Parameter Value

A 1.230× 105 sec−1

Q 184 kJ/mole
m 0.546
n 0.0289
s̃ 0.165 MPa
f0 0.325 MPa
α 3.85

TABLE I I I Internal deformation resistance as a function of temper-
ature for Al-1Mn

Temperature s0

(Celsius) (MPa)

300 1.80
400 1.57
500 1.32

TABLE IV Internal deformation resistance as a function of tempera-
ture for Al-Mg-Si

Temperature s0

(Celsius) (MPa)

400 0.221
450 0.206
500 0.181
550 0.175

strain-rate compression tests. In other words, the model
should replicate the experimental data from which its
parameters have been extracted. This numerical simula-
tion requires a time integration of a set of simultaneous
ordinary-differential-equations including Equations 3
and 5 and the following kinematic equation:

˙̄ε = ˙̄σ

E
+ ˙̄εp (19)

where E is the temperature dependent elastic modu-
lus. These equations are solved by setting˙̄ε equal to
the constant strain-rate of the test being simulated. The
initial values ofσ̄ and ¯εp are set to zero while that ofs
to the value ofs0 at the test temperature. These equa-
tions are stiff in nature and therefore need a specialized
numerical integration procedure. The ’stiff’ subroutine
in Numerical Recipes [21] uses an implicit integration
procedure and is ideally suited for this task.

The numerical simulations are compared with the ex-
perimental stress-strain curves in Figs 5–7 for Al-1Mn
and Figs 8–11 for Al-Mg-Si. In almost all cases, the
simulated results follow the rise in the experimental
stress-strain curves and saturate at the same level of
stress. The simulated curves saturate at about the same
strain values as the experimental curves do. In isolated
instances the simulated saturation-stress is a little dif-
ferent from the actual saturation-stress. For example,
in Fig. 11, at a temperature of 550◦C and a strain-
rate of 1.0 sec−1 for Al-Mg-Si, the simulated saturation
stress is 37.0 MPa while the actual saturation stress is
38.0 MPa. The ability of the model to predict saturation
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Figure 5 Predicted true stress-strain curve of proposed model (lines)
compared with experiment (points) for Al-1Mn;T = 300 C; strain
rate= 0.25, 2.5, 25 (1/sec.).

Figure 6 Predicted true stress-strain curve of proposed model (lines)
compared with experiment (points) for Al-1Mn;T = 400 C; strain
rate= 0.25, 2.5, 25 (1/sec.).

Figure 7 Predicted true stress-strain curve of proposed model (lines)
compared with experiment (points) for Al-1Mn;T = 500 C; strain
rate= 0.25, 2.5, 25 (1/sec.).

Figure 8 Predicted true stress-strain curve of proposed model (lines)
compared with experiment (points) for Al-Mg-Si alloy;T = 400 C; strain
rate= 0.001, 0.01, 0.1, 1.0 (1/sec.).

Figure 9 Predicted true stress-strain curve of proposed model (lines)
compared with experiment (points) for Al-Mg-Si alloy;T = 450 C; strain
rate= 0.001, 0.01, 0.10, 1.0 (1/sec.).

stresses at all strain-rates and temperatures is dependent
on the Arrhenius factor exp{ Q

RT}. The use of this term is
desirable because it leads to considerable simplification
of the model and the process of parameter estimation.
But because of its broad generalization it does lead to
small errors in prediction of the saturation stresses as is
evident from the results of this work as well as others
[6, 8]. In any case, instances of a discrepancy between
simulated and actual saturation stresses are very few
and the error never exceeds 7%.

The simulated curves also follow, to a reasonable ex-
tent, the initial steep rise in the experimental curves
followed by a rather sharp change in slope as steady
state is approached. There are exceptions to this state-
ment as is evident in Figs 9–11 where the simulated
curves are unable to follow the experimental curves at
a strain-rate of 1.0 sec−1. A possible explanation for this
is the existence of more than one hardening/softening
mechanism at high temperatures and strain-rates, which
would require the use of more than one internal variable.
A single internal variable model though is a reasonable
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Figure 10 Predicted true stress-strain curve of proposed model (lines)
compared with experiment (points) for Al-Mg-Si alloy;T = 500 C; strain
rate= 0.001, 0.01, 0.1, 1.0 (1/sec.).

Figure 11 Predicted true stress-strain curve of proposed model (lines)
compared with experiment (points) for Al-Mg-Si alloy;T = 550 C; strain
rate= 0.001, 0.01, 0.1, 1.0 (1/sec.).

Figure 12 Slope (dσ̄dε̄p ) of true stress-strain curve as a function of true
stress ( ¯σ ): comparison of model prediction (lines) with experiment
(points) for Al-1Mn;T = 500 C; strain rate= 0.25, 2.5, 25 (1/sec.).

Figure 13 Slope (dσ̄dε̄p ) of true stress-strain curve as a function of true
stress ( ¯σ ): comparison of model prediction (lines) with experiment
(points) for Al-Mg-Si alloy;T = 450 C; strain rate= 0.001, 0.01, 0.1,
1.0 (1/sec.).

compromise between accuracy and simplicity. Another
feature observed in some experimental stress-strain
curves is a small droop at large strains. This softening
phenomenon is possibly caused by damage accumula-
tion. Our simulations do not predict softening because
the model as formulated does not include damage vari-
ables. Some strain-strain curves (Fig. 7 for example)
actually exhibit a pseudo-hardening after appearing to
be saturated. This is primarily due to the failure of the
lubricant rather than an intrinsic material behavior.

Figs 12 and 13 present further proof for the ability
of the model to recreate the data. These figures com-
pare simulated with experimentaldσ

dεp vs.σ curves for
Al-1Mn and Al-Mg-Si at 500◦C and 450◦C, respec-
tively. Experimentaldσ

dεp were obtained by numerical
differentiation of rawσ vs.εp data. While the simula-
tions do not match the experimental results exactly, the
figure does reveal the ability of the tangent function of
Equation 10 to describe the steep change in slope.

5. Concluding remarks
Overall the simulated curves resemble the experimental
curves in Figs 5 through 11 to a great extent. Hence,
the proposed model can be considered as a reasonably
accurate description of the hot-forming behavior of the
two Aluminum alloys. Additional proof for its validity
will depend on its ability to simulate and predict tests
that were not used to generate its parameters. Such tests
include strain-rate jump tests and constant loading-rate
tests. These tests are being conducted and the results
will be reported shortly.

A shortcoming of the model is its inability to model
softening phenomena. This can be rectified by includ-
ing damage variables and appropriate damage evolu-
tion equations. A second limitation is the fact that the
model uses a single scalar internal variable to represent
hardening and thus cannot handle extensive texture de-
velopment. The model parameters have been quantified
using uniaxial compression data. In the case of Al-1Mn,
compression tests were performed till the specimens
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were compressed to 22% of their initial height. For the
Al-Mg-Si specimens, compression was performed to
60% of the initial height. Uniaxial compression of face-
centered-cubic metals such as aluminum alloys results
in a preferred orientation that can be described, rather
approximately, as a [110] fiber texture [22]. The orienta-
tion density distribution depends on a variety of factors
such as strain, strain rate, temperature, alloy compo-
sition, and location within the specimen [23]. For the
strains, strain rates, temperatures, and alloy composi-
tions under consideration here, the peak value in times
random units for the orientation density could range
from five to ten (and possibly more) in a (111) pole fig-
ure [22, 23]. It would be reasonable to assume that this
single scalar variable model can be effectively applied
in metal forming problems where the texture develop-
ment is not significantly different from that of these
uniaxial compression specimens.

The elastic-viscoplastic equations presented here are
fairly general and should be applicable to materials
other than Al-1Mn and Al-Mg-Si. It should be useful
for modeling the hot-forming behavior of a large class
of metallic alloys in the range of strain-rates from 0.001
to 100.0 sec−1. It should also prove to be an effective
constitutive model for incorporation in finite-element
simulation of hot-forming processes.

Acknowledgements
The Author wishes to thank Professor Y. V. R. K. Prasad
of the Department of Metallurgy, Indian Institute of Sci-
ence, Bangalore, for the many interesting discussions
on high temperature testing of alloys as well as for gra-
ciously providing test data on the Al-Mg-Si alloy. The
author is also grateful to the Department of Mechanical
Engineering, Indian Institute of Science, Bangalore.

References
1. C. B E R T R A N D-R O S S I N I et al., “Modeling of Metal-

Forming Processes” (Kluwer Academic Publishers, Dordrecht, The
Netherlands, 1988) p. 271.

2. J. M. RIGAUT, D. LOCHEGNIES, J. OUDIN, J. C. GELIN and
Y. RAVALARD, “Modeling of Metal-Forming Processes” (Kluwer
Academic Publishers, Dordrecht, The Netherlands, 1988) p. 261.

3. C. R. B O E R, N. R E B E L O, H. R Y D S T A D and G.
S C H R O D E R, “Process Modeling of Metal-Forming and Thermo-
mechanical Treatment” (Springer-Verlag Berlin, Heidelberg, 1986).

4. D. I D D A N andJ. R. T I R O S H, Journal of Applied Mechanics
63 (1996) 27.

5. O. C. Z I E N K I E W I C Z andP. N. G O D B O L E, International
Journal for Numerical Methods in Engineering8 (1974) 3.

6. H. S H I, A . J. M C L A R E N, C. M . S E L L A R S, R. S H A H A N I

andR. B O L I N G B R O K E, Materials Science and Technology13
(1997) 210.

7. T . S H E P P A R DandA . J A C K S O N, ibid. 13 (1997) 203.
8. J. M . C A B R E R A, J. J. J O N A S andJ. M . P R A D O, ibid. 12

(1996) 579.
9. S. R. B O D N E R, in “Unified Constitutive Equations for Creep and

Plasticity,” edited by A. K. Miller (Elsevier Applied Science, New
York, 1987) p. 273.

10. A . K . M I L L E R , in “Unified Constitutive Equations for Creep and
Plasticity,” edited by A. K. Miller (Elsevier Applied Science, New
York, 1987) p. 139.

11. M . A . R O W L E Y andE. A . T H O R N T O N, Journal of Engi-
neering Materials and Technology118(1996) 19.

12. A . F. S K I P O R, S. V . H A R R E N andJ. B O T S I S, ibid. 118
(1996) 1.

13. L . A N A N D , ibid. 104(1982) 12.
14. S. B. B R O W N, K . H. K I M andL . A N A N D , International

Journal of Plasticity5 (1989) 95.
15. V . M . S A M P L E, L . A . L A L L I andO. R I C H M O N D, “Mod-

eling the Deformation of Crystalline Solids” (TMS, Warrendale, PA,
1991) p. 327.

16. D. C. S T O U F F E RandL . T . D A M E , “Inelastic Deformation
of Metals: Models, Mechanical Properties, and Metallurgy” (John
Wiley and Sons, New York, 1996).

17. S. R. B O D N E R andY . P A R T O M, Journal of Applied Mechan-
ics42 (1975) 385.

18. F. G A R O F A L O, Transactions AIME227(1963) 351.
19. J. J. J O N A S, C. M . S E L L A R S andW. J. M C G. T E G A R T,

Metallurgical Reviews14 (1969) 1.
20. J. S A R K A R, Y . V . R. K . P R A S A D andM . K . S U R A P P A,

Journal of Materials Science30 (1995) 2843.
21. W. H. P R E S S, S. A . T E U K O L S K Y, W. T. V E T T E R L I N G

andB. P. F L A N N E R Y, “Numerical Recipes in FORTRAN: The
Art of Scientific Computing,” 2nd ed. (Cambridge University Press,
1992).

22. C. S. B A R R E T T andT. B. M A S S A L S K I , “Structure of Met-
als,” 3rd ed. (McGraw Hill, 1966).

23. Z . J I N, G. T . G R A Y andY . W. K I M , Materials Science and
Engineering A239(1997) 729.

Received 18 February 1999
and accepted 3 February 2000

3654


